Матричные вычисления в Mathcad


Фазовый портрет брюсселятора при В=0 5 (продолжение листинга 9 16)



Рисунок 9.24. Фазовый портрет брюсселятора при В=0.5 (продолжение листинга 9.16)





Как видно из Рисунок 9.24, все траектории, вышедшие из разных точек, асимптотически стремятся к одному и тому же аттрактору (1,0.5). Из теории динамических систем нам известно, что такой аттрактор называется узлом (с узлом мы уже встречались в примере разд. 9.4.1). Конечно, в общем случае при анализе фазового портрета желательно "прощупать" большее число траекторий, задавая более широкий диапазон начальных условий. Не исключено, что в других областях фазовой плоскости траектории будут сходиться к другим аттракторам.

Эволюцию фазового портрета брюсселятора можно наблюдать, проводя расчеты с различным параметром в. При его увеличении узел будет сначала постепенно смещаться в точку с координатами (1, в), пока не достигнет бифуркационного значения B=2. В этой точке происходит качественная перестройка портрета, выражающаяся в рождении предельного цикла. При дальнейшем увеличении в происходит лишь количественное изменение параметров этого цикла. Решение, полученное при B=2.5, показано на Рисунок 9.25.

Примечание 1
Примечание 1


Чтобы найти аттракторы динамической системы, как известно, нужно решить систему алгебраических уравнений, получающуюся из системы ОДУ заменой нулями их левых частей. Эти задачи также удобно решать средствами Mathcad (см. главу 5). В частности, исследование зависимости фазового портрета от параметров системы ОДУ и поиск бифуркаций можно проводить методами продолжения (с/и. разд. 5.3.3).










Начало  Назад  Вперед


Книжный магазин